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Abstract

Awareness of what surrounds a vehicle directly affects
the safe driving and maneuvering of an automobile. Sur-
round information or maps can help in ethnographic studies
of driver behavior as well as provide a critical input in the
development of effective driver assistance system. In this
paper, we introduce the concept of Dynamic Panoramic Sur-
round (DPS) map that shows the nearby surroundings of the
vehicle, and detects the objects of importance on the road.
Omnidirectional cameras which give a panoramic view of
the surroundings can be useful for visualizing and analyzing
the nearby surroundings of the vehicle. A novel approach
for synthesizing the DPS using stereo and motion analysis
of video images from a pair of omni-directional cameras
on the vehicle is developed. Successful generation of DPS
in experimental runs on an instrumented vehicle testbed is
demonstrated. These experiments prove the basic feasibility
and show promise of omni video based DPS capture algo-
rithm to provide useful semantic descriptors of the state of
moving vehicles and obstacles in the vicinity of a vehicle.

1. Introduction and Motivation

According to the studies conducted by U.S. National
Highway Traffic Safety Administration (NHTSA), their re-
port “Traffic Safety Facts 2003” [1] states that there have
been 38,252 fatal crashes with 42,643 fatalities due to acci-
dents on US roads in 2003. A significant number of these
fatalities are due to running off the road or collision with
other objects. In recent years, considerable research is be-
ing performed for developing intelligent driver support sys-
tems which warn the driver of a possible runoff or colli-
sion and allow the driver to take timely action to avoid or
at least reduce their impact. These systems use a sensor
suite which may contain video cameras mounted in vari-
ous positions, thermal infrared imagers, and active sensors

Figure 1. Illustration of a dynamic surround maps for Freeway
and City streets. (x, y): Coordinates of other objects w.r.t. ego-
vehicle. V : Velocity w.r.t. road. LP: Lateral position of ego-
vehicle w.r.t center of the lane

such as RADAR, LIDAR and ultrasonic sensors, as well
as the data from vehicle dynamic sensors. Detecting lanes
would help to determine the lateral position of the vehicle
and warn the driver in case of lane departure and prevent
scenarios such as collision with vehicles or fixed objects,
or running off the road. Detecting front vehicles would
be useful in preventing accidents due to sudden braking of
the other vehicle. Monitoring sides of the vehicle contain-
ing blind spots would be especially useful when the driver
intends to change lanes. Detecting non-motorists such as
pedestrians and bicyclists is of particular interest for non-
highway driving since pedestrians are harder to detect and
are most vulnerable.

Thus, an effective driver assistance system should have
a perception of complete surroundings including the events
taking place in front, back, and sides of the car. Here, we
introduce the concept of a dynamic surround map illustrated
in Figure 1 that could be very useful for visualizing and
analyzing the situation. The surround map would contain
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lanes, vehicles, pedestrians, and other objects along with
their attributes such as position, size, and velocity. Surround
map generation would also be useful for off-line analysis
of interesting events, especially in driver behavioral studies
[14].

Omnidirectional cameras with a 360 degree panoramic
view are naturally suited for synthesizing the surround
maps. Due to their large field of view and lower resolu-
tion, they are appropriate for detecting nearby objects using
small number of sensors. In the following we present our
research dealing with the framework, development, and ex-
perimental verification of obtaining “Dynamic Panoramic
Surround” (DPS) maps using a pair of omnidirectional cam-
eras mounted on two sides of an automobile. Overlapping
parts of video images from the two omni cameras are used
to detect objects in front of the vehicle using binocular
stereo. For each side of the vehicle, a monocular view is
available from the respective omni camera. Motion stereo
is applied on consecutive frames of the side views to detect
objects on the sides.

2. Related Research

Autonomous driving and mobile robotics were the main
drivers in the development of some of the early video based
obstacle detection and navigation systems. A number of
good survey papers present some of those efforts. In [4, 3],
Bertozzi et al. give a comprehensive survey of computer
vision techniques used for intelligent vehicles. Approaches
for lane, pedestrian, and obstacle detection are described
and analyzed. [8] presents a survey about vision techniques
used for traffic analysis from stationary platforms as well as
moving vehicles. In [15], a survey of lane detection tech-
niques and their characteristics is performed, and a novel
method using steerable filters is proposed to detect lanes as
well as the “bots-dots” markers especially found on Califor-
nia highways.

Omnidirectional cameras with their panoramic view are
naturally suited for complete surround monitoring of vehi-
cles. In [5] a monocular omnidirectional camera is used
to compensate road ego-motion, and detect vehicles with
height or independent motion. In [12], the V-disparity ap-
proach for stereo developed by [11] is applied to a pair of
coaxially mounted omni cameras for monitoring blind spots
behind the vehicle especially during reversing of the car. In
[7], an omni camera mounted in a car obtains a panoramic
view consisting of the surroundings as well as the driver’s
face. The system synthesizes a virtual view of the surround-
ings as seen by the driver by estimating driver’s head orien-
tation. In [2], virtual side views generated from omni cam-
era are used to track surrounding vehicles by detecting their
wheels.

Recently, there has been a shift towards the development

of video based systems for driver assistance rather than au-
tonomous driving. For this, it is important that the informa-
tion about potential dangers is presented to the driver in a
non-distracting and reliable manner [6]. In this paper, our
focus is mainly on detection, localization, and mapping of
objects (moving or stationary) in the immediate vicinity of
a moving vehicle with video sensors. A key differentia-
tor of the research discussed in this paper is the desire to
develop a dynamic panoramic surround map, in somewhat
“holistic” manner rather than considering independent and
separate modules for detecting objects in the front or side of
the vehicle.

3. Vehicle Surround Capture with Omni-Video

Due to the comparatively lower resolution of omni cam-
eras, proper configuration is very important for obtaining
good coverage, sensitivity, and foreground-background dis-
crimination. For example, cameras mounted on top of roof
[5] can see vehicles at farther distance with better reso-
lution. However, the disparity difference between vehicle
and road is small, making it difficult to isolate the vehicles
purely by stereo. Furthermore, such a configuration is not
suitable for standard cars. A pair of coaxially mounted omni
cameras was used by [12] to monitor blind spots behind the
car effectively. However, a large part of the FOV is occu-
pied by the car itself and is therefore unused.

Here, we use of a pair of cameras each near side view
mirror as shown in Figure 2. The view in front of the car
overlaps in the two cameras and is used for stereo analy-
sis. Monocular view on both sides is obtained from each
of the cameras and used for motion analysis. The dispar-
ity difference between vehicle and ground is larger than for
a top-mounted camera making stereo discrimination easier.
As a trade-off, the objects such as cars have smaller frontal
area with window-mounted camera, reducing their image
size and making it more difficult to detect vehicles that are
farther away.

In addition, the views of the driver and passenger are also
obtained and can be used to analyze the driver behavior.
For example, in [7] the driver’s face is detected in a similar
setup by fitting an ellipse to edges using randomized Hough
transform, and tracked using Kalman filter. The orientation
of the face is estimated using Hidden Markov Models, and
used to generate the view that the driver observes. This ap-
proach has been shown to be robust to illumination changes,
shadows and other imaging problems.

The following coordinate systems are used for the anal-
ysis as shown in Figure 2:

1. Vehicle coordinate system: Origin is on the road, Z
axis points in front, Y axis points down, and X axis
points towards right. The coordinates in this system
are denoted by: P0 = (X0, Y0, Z0)T
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Figure 2. Camera configuration for surround capture and the rel-
evant coordinate systems. Vehicle: (X0, Y0, Z0), Right omni:
(X1, Y1, Z1), Left omni: (X2, Y2, Z2)

2. Coordinate system of camera i: Origin is at camera op-
tical center, Z axis is along optical axis, and X − Y
axes form the image plane. The transformation be-
tween the vehicle coordinates P0 and the camera co-
ordinates Pi for i = 1...2 is represented as:

P0 = RiPi + Di , Pi = RT
i (P0 − D); (1)

where Ri, Di are the rotation matrix and translation
vector of camera i.

3. Omni pixel coordinates: Each point Pi in the camera
i’s coordinate system is projected onto the omni cam-
era pixels wi = (ui, vi)T by a many-to-one mapping
fi as:

wi = fi(Pi) , Pi = λgi(wi)+hi(wi) � λgi(wi) (2)

where fi denotes a many-to-one transform from cam-
era to pixel, and gi and hi constitute the inverse trans-
formation mapping every pixel wi back to a 3-D line in
the camera coordinate system. For central panoramic
cameras, all projection lines pass through a single
point on Z axis, which can be taken as origin, so that
hi = 0.

The omni cameras used in this study are central
panoramic cameras, each consisting of a hyperbolic mirror
and a camera placed on its axis, with the center of projection
of the camera on one of the focal points of the hyperbola.

The block diagram of the video analysis framework is
shown in Figure 3. Video sequences are obtained from a
pair of omni cameras mounted on two sides of the vehicle.
Camera calibration is performed off-line to determine the
relationship between the vehicle and pixel coordinates. Us-
ing calibration information, the images are rectified to ob-
tain virtual perspective views looking forward towards the
road. Rectification simplifies the stereo geometry making
it easier to match corresponding features between the two
images. Area-based correlation is used to perform stereo

Figure 3. Block diagram of video analysis from vehicle mounted
omni cameras.

matching between features and form a disparity map. Fea-
tures with similar disparity are grouped into objects, and
distance to the objects is computed. For analyzing the side
views from each camera, motion analysis is applied to con-
secutive virtual perspective images from each camera on the
respective sides. The disparity map has components corre-
sponding to the object distance as well as independent mo-
tion. Detection is performed by assuming that the whole ob-
ject has nearly same disparity and its position is computed
assuming it touches the road. The object positions obtained
from stereo and motion analysis are converted to the vehicle
coordinates to insert them into the surround map.

4. Camera Calibration

In order to match the points between multiple cameras,
and map them to the 3D space, it is necessary to calibrate
the intrinsic and extrinsic parameters of the cameras. The
intrinsic parameters for transforming the pixel coordinates
wi and camera coordinates Pi can be pre-computed before
the cameras are installed using a setup in [5] or [12]. The
extrinsic parameters relating vehicle coordinates to each of
the camera coordinates need to be calibrated when the cam-
eras are mounted on the vehicle. In particular, the rotation
matrices Ri of the cameras are used to obtain rectified per-
spective views of the overlapping FOVs of the omni cam-
eras.

Calibration of extrinsic parameters is currently per-
formed by taking a car into a scene with a number of par-
allel lines in the directions of the vehicle axes. Sample
points on the lines are manually marked and using equa-
tion (2) along with intrinsic parameters, the pixel coor-
dinates w1, w2 . . . wK of sample points on each line are
transformed to camera projective coordinates p1, p2 . . . pK

within scale factor, each corresponding to a ray from the
camera origin in the direction of the line of sight. The co-
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ordinates are normalized so that ‖pi‖ = 1, and therefore
correspond to projections on a virtual sphere centered at the
camera origin. Singular value decomposition (SVD) of the
following matrix is used to fit a line to the points.

L =
(

p1 p2 . . . pK

)
(3)

The left singular vector corresponding to the smallest sin-
gular value of L gives the vector l corresponding to line
equation lT p = 0. The procedure is repeated for a number
of lines in the image.

Images of parallel lines intersect at the vanishing point
corresponding to the point at infinity in the direction of the
line. If a number of parallel lines have images represented
by line vectors l1, l2 . . . lN , the vanishing point m of these
lines can be similarly obtained using SVD of:

M =
(

l1 l2 . . . lN
)

(4)

For lines along the length of the car (vehicle Z axis), the
direction of the vanishing point is (0, 0, 1)T in vehicle coor-
dinate system. In camera coordinates, this is transformed to
RT (0, 0, 1)T = r3 where r3 is the column 3 of RT (or row
3 of R). Similarly, the vanishing point of the lines across
the length of the car (vehicle X axis) transforms to r1 (row
1 of R) in the camera coordinates. For the Y direction,
one can use vertical objects such as poles in the image if
available. Otherwise, one can assume orthogonality and put
r2 = r3 × r1. Due to errors in the determination of van-
ishing points, it is possible that the rows r1, r2, r3 matrix R
may not all be exactly orthonormal. In such case, orthonor-
mality can be enforced by taking the SVD R = USV T and
replacing R by UV T .

5. Stereo and Motion Based Panoramic Sur-
round Generation

The calibration obtained above is used to obtain virtual
perspective view in front of the car from both the omni im-
ages. If the cameras are at the same height and longitudinal
position, rectified images are obtained, in which the view-
ing directions of both images are parallel, and the baseline
is perpendicular to the viewing direction. Suppose a point
with vehicle coordinates (X,Y,Z) forms images at (xl, yl)
and (xr, yr) in the respective virtual perspective planes of
the two cameras with focal length f and baseline B. Then,
these are related by:

xl − xr = fB/Z , yl = yr (5)

Stereo matching is simplified in this configuration where
for every feature at (xl, yl) one tries to find the correspond-
ing feature (xr, yr) which should lie along the same row.
If difference between the camera heights and positions is

(a) (b)

Figure 4. Flow charts for (a) Front object detection using binocular
stereo analysis (b) Side object detection using motion analysis.

small, the vertical disparity yl − yr can be neglected for ob-
jects far from the cameras. We use area based correlation
for matching in order to obtain dense depth map using the
implementation in [9].

5.1. Stereo-based front object detection

The road is modeled as a planar surface, so that the dis-
parity in rectified images is zero at the horizon, and linearly
increases with y. Using the information from calibration
module, the road disparity is computed. The pixels having
disparities smaller than or equal to this disparity plus a small
threshold are assumed to lie on the road and are suppressed.
Also, pixels on a vehicle object are likely to have same dis-
parity. To facilitate detection, pixels with same disparity in
each column are clustered in a similar manner as in [11].
The steps in the above process (Figure 4 (a)) are:

1. Form an image score(x, y) based on the difference be-
tween the disparity d of the pixel and the correspond-
ing disparity d0 if it were on road.

score(x, y) = 0 if disp(x, y) ≤ d0(y)
1 if disp(x, y) ≥ d0(y) + T (6)

[disp(x, y) − d0(y)]/T in between

2. Form a columnwise disparity histogram image
hist(x, d) such that:

hist(x, d) =
∑

disp(x,y)=d

score(x, y) (7)

Each column of this image is a histogram of the dispar-
ities in that column weighted by the score. Pixels in an
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object at a particular distance would have nearly same
disparity and form a horizontal line in this image.

3. Smooth the histogram image using Gaussian filtering
and morphological closing. Threshold the image and
find connected components.

4. Form a front obstacle image obst(x, d) by replacing
pixels in each column of connected component in his-
togram image by the centroid. This averages the error
in the disparity and gives a sub-pixel disparity value
that is stored as the grey level in this image.

5.2. Motion-based side object detection

Each omni camera obtains a monocular view on the re-
spective side of the car. Stereo matching is applied to con-
secutive frames from the same camera, so that the camera is
displaced between the two frames. In absence of indepen-
dent motion, the disparity of each feature is directly pro-
portional to the camera velocity and inversely proportional
to the distance to the object. However, in case of indepen-
dently moving objects, their motion adds to the disparity,
hence depth estimates cannot be derived directly from the
disparity. But if the object is rigid and at nearly constant
distance from the camera, its disparity is constant, and clus-
tering can be used to extract the object. Note that the dispar-
ity can be negative in case of overtaking vehicles, whereas
the stereo algorithm implementation [9] searches only pos-
itive disparities. Hence, the right image is displaced by a
constant offset towards left, to bias disparity towards posi-
tive value. The object extraction procedure is a modification
of that for binocular stereo (Figure 4 (b)) as described be-
low:

1. Displace the right image by a fixed offset towards left
to make disparities positive.

2. Use the implementation for binocular stereo [9] to
form disparity image disp(x, y).

3. Form the disparity histogram image hist(x, d) using
steps similar to (1) to (3) in the previous algorithm.

4. For each component in hist(x, d), find pixels in
disp(x, y) contributing to the component. Form the
side obstacle image obst(x, y) by replacing each col-
umn of these pixels in disp(x, y) with the bottommost
pixel.

5. Assuming that the bottom of the object lies on ground
compute its vehicle coordinates using the calibration.

5.3. Panoramic surround generation

The front and side obstacle maps obtained above are
used to generate the surround map. Suppose the two
omni cameras are situated at (−B/2,−H,Zoff ) and
(+B/2,−H,Zoff ) in the vehicle coordinate system where
B is the baseline, H is the camera height, and Zoff is
the longitudinal distance between the camera and the car’s
center. Let the centers of the rectified images be at pixel
(xc, yc) and f be the focal length corresponding to the pixel
scale. Then, for each pixel (x1, y1) in the front obstacle map
(w.r.t. left image), the 3-D vehicle coordinates are given by:

Z0 =
f

d
B + Zoff , X0 =

x1 − xc

d
B − B

2
, Y0 = H (8)

In case of side obstacle map, the disparities do not give dis-
tance information for moving objects. Hence, it is assumed
that the bottom of the bounding box of obstacle (yb) lies on
ground and the y coordinate of the pixel is used to find the
object distance. This gives:

X0 = ∓
[
yb − yc

f
H +

B

2

]
, Z0 = ±x − xc

y − yc
H + Zoff

(9)
where in ±,∓ the top sign is for left camera and bottom
sign is for right camera. The vehicle (X,Z) coordinates of
each obstacle pixel in front and side are projected on the
panoramic surround map forming contours corresponding
to each component. To smooth the contours and fill the
gaps, a morphological opening operation is applied to the
contours to keep errors on the side of caution by assigning
closer object distance when in doubt.

6. Dynamic Panoramic Surround Maps: Ex-
perimental Studies

The LISA-Q intelligent test bed shown in Figure 5 (a) is
designed as a system capable of collecting large amounts of
data from a variety of modular sensing systems and process-
ing that data in order to be fed back to the human occupant.
Sensor systems include rectilinear cameras, wide FOV cam-
era systems, GPS and navigation systems, and the data from
internal automobile vehicle state sensors available on the
Controller Area Network (CAN) bus. The system contains
an array of computers that serve for data collection as well
as real-time processing of information. Detailed informa-
tion about this test bed is described in [13].

For this study, a pair of omni cameras were mounted on
the windows and the car was driven on the roads around and
outside the campus. The video from the cameras was digi-
tized with image size 320 × 240 and stored on the system.
Figure 5 (b) shows the images from the left and right omni
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Figure 5. (a) The LISA-Q intelligent vehicle test bed. Inset are
close up views of the omni cameras on two sides of the vehicle.(b)
Video images from omni cameras on left and right side of the vehi-
cle. (c) Virtual front views from left and right cameras. (d) Virtual
side views from left and right cameras. (e) Time series of own
vehicle speed and radar object distance from CAN bus.

cameras. The virtual front views generated from both cam-
eras are shown in (c). The virtual side views on respective
sides are in (d). The time series of own vehicle speed and
radar object distance acquired from CAN bus are shown in
(e).

For calibration, the car was moved around in a park-
ing lot with parallel lines. Note that the parking lines are
mapped to curves in the omnidirectional image. The points
on the lines were manually marked as shown in Figure 6 (a)-
(b) and calibration was computed using the method in Sec-
tion 4. Rectification using this calibration generates vir-
tual perspective views in front of the car as shown in Fig-
ure 6 (c)-(d). The camera parameters measured by this ap-
proach would be prone to camera vibrations and drift. To
compensate for this error, small correction in form of ver-
tical translation was manually applied to one of the recti-

Figure 6. Points on the lines in parking lot as well on the hori-
zon line are used to obtain the calibration for omni cameras. Vir-
tual perspective images from the cameras corresponding to view
in front of the car are shown.

fied images so that the disparities lie exactly along hori-
zontal lines. For automatic operation, incremental calibra-
tion should be performed, possibly by measuring the image
motion of the vehicle frame and using that to compute the
changes in extrinsic parameters.

After calibration, the car was driven on roads outside the
campus. Figure 7 shows the results of surround map genera-
tion on snapshots from the video sequence in which another
car is overtaking from the left side. In the first two snap-
shots, the car is detected in side images using motion analy-
sis. Each image set contains 6 images showing the detection
steps. Top images show successive images from the virtual
right side views obtained from the right omni camera. Im-
plementation in [9] was used to compute the disparity map
shown mid-right. One of the images was translated to bias
the disparities to positive side. The superimposition of im-
ages is shown in mid-left and the disparity map is shown in
mid-right. Though the car is nearer to the camera than the
background, the independent motion of the overtaking car
in the forward direction produces negative overall disparity,
which when biased becomes a positive value smaller that
that from the distant background. The histogram image of
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the columns of the disparity map clusters these disparities as
shown in bottom-left, with the vehicle and background lay-
ers concentrating as line segments. However, regions hav-
ing no significant features do not get disparity estimates,
hence there are breaks in the segments. For each column
in the disparity histogram, pixels having the corresponding
disparity are searched in the disparity map, and the bottom-
most pixel in these is considered to be the bottom of the
layer for that column as recorded in the bottom-right. These
pixels are projected onto the surround map showing the de-
tected car.

In the last two snapshots, the car goes in front view, and
stereo analysis is used to detect it. The top images in each
image set show the virtual views of the front from the two
cameras. The superimposition of these two images in the
mid-left image clearly shows the disparity between the im-
ages for the object car and the computed disparity map is
shown mid-right. The histogram image of the columns of
the disparity map was computed as shown in bottom-left
with each row in this image corresponding to a particular
disparity. Each pixel in this image has the brightness pro-
portional to the weighted sum of the pixels in that column
having the corresponding disparity. Since the front features
of the car have nearly same disparity, they accumulate in
form of a horizontal segment in the disparity image and can
be easily isolated. In bottom-right, the histogram image is
processed to give obstacle image showing the column po-
sition and the disparity of the object. Using this informa-
tion and the camera calibration, the segment corresponding
to the detected car is projected to the surround map. The
transition of the detected car from the side to front view is
demonstrated.

The size of the objects in the image determines the dis-
tance at which they can be detected reliably. It was observed
that at the distance of 10 to 15 meters, a typical car had size
of approximately 16× 10 pixels in omni image and 25× 16
pixels in the virtual perspective image. The disparity was
about 20 pixels and the object could be detected reliably.
However, at distances of 40 to 50 meters, the omni resolu-
tion decreased to 5 × 5 pixels, virtual image resolution to
10 × 4 pixels, and disparity to approximately 6 pixels. The
detection at this distance was somewhat sporadic and the
estimates of range and therefore lateral position were less
accurate. A higher resolution camera such as 1K × 1K
could be used to improve the accuracy and resolution.

7. Concluding Remarks

This paper emphasized the importance of vehicle sur-
round for use in intelligent driver support systems as well
as for ethnographic analysis of driver behavior. A novel
framework for synthesizing a “Dynamic Panoramic Sur-
round (DPS)” map using a pair of omni directional cameras

mounted on sides of the vehicle was described. For vehi-
cle detection, stereo analysis was used on the overlapping
views of the front of the car, and motion analysis was used
for monocular views of the sides of the car. Experimen-
tal runs with an instrumented test vehicle were conducted
to show the basic feasibility of omni video based surround
capture algorithm. It was observed that resolution of omni
cameras is low for the front parts of the image. Due to this,
segmentation and depth estimation becomes more challeng-
ing. However, use of only two sensors for analyzing front as
well as side views make the approach attractive for design-
ers. Increasing the resolution of the omni image would give
better reliability for detection and measurements of range
and lateral position.

It is important to acknowledge that an effective and use-
ful approach for surround based driver assistance system,
needs systematic and careful “human-factors” oriented in-
vestigations in addition to the development of the novel sur-
round capture technology. Such multidisciplinary studies
consider optimum means for presenting information about
potential dangers to the driver in a non-distracting and reli-
able manner. Collaborations with experts from human ma-
chine interactions, cognitive science, and psychology would
be essential to make progress in this area [16, 6, 10].
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Figure 7. Results of surround generation detecting a vehicle passing from left. The first two image sets are the left side views analyzed
using motion and the last two are front views analyzed using stereo. Each image set contains 6 images showing steps in detection: Top:
Rectified left and right images for stereo, consecutive images for motion. Mid left: Composite image. Mid right: Disparity image. Bottom
left: Disparity histogram image. Bottom right: Obstacle image. Surround maps show own car (black) and approximate positions of other
vehicles (red).

[9] K. Konolige. Small vision system: Hardware and imple-
mentation. In Eighth International Symposium on Robotics
Research, pages 111–116, October 1997. http://www.
ai.sri.com/˜konolige/papers.

[10] N. Kuge, T. Yamamura, O. Shimoyama, and A. Liu. A driver
behavior recognition method based on a driver model frame-
work. In SAE 2000 World Congress, Session: Human Cen-
tered Driver Assistance Systems, March 2000.

[11] R. Labayrade, D. Aubert, and J.-P. Tarel. Real time ob-
stacle detection in stereovision on non flat road geometry
through V-disparity representation. In IEEE Intelligent Ve-
hicles Symposium, volume II, pages 646–651, 2002.

[12] L. Matuszyk, A. Zelinsky, L. Nilsson, and M. Rilbe. Stereo
panoramic vision for monitoring vehicle blind-spots. In
Proc. IEEE Intelligent Vehicles Symposium, pages 31–36,
June 2004.

[13] J. McCall, O. Achler, and M. M. Trivedi. Design of an in-
strumented vehicle testbed for developing human centered
driver support system. In Proc. IEEE Intelligent Vehicles
Symposium, pages 483–488, June 2004.

[14] J. McCall, O. Achler, M. M. Trivedi, P. Fastrez, D. Forster,
J. B. Haue, and E. B. J. Hollan. A collaborative approach

for human-centered driver assistance systems. In 7th IEEE
Conf. on Intelligent Transportation systems, October 2004.

[15] J. McCall and M. M. Trivedi. Video based lane estimation
and tracking for driver assistance: Survey, algorithms, and
evaluation. Technical report, CVRR, December 2004.

[16] M. A. Recarte and L. M. Nunes. Mental workload while
driving: Effects on visual search, discrimination, and deci-
sion making. Journal of Experimental Psychology: Applied,
9(2):119–137, 2003.

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 

1063-6919/05 $20.00 © 2005 IEEE 

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on May 26,2010 at 22:17:58 UTC from IEEE Xplore.  Restrictions apply. 


